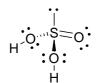


### Universidade Federal de Alagoas Programa de Pós-Graduação em Química e Biotecnologia



Av. Lourival de Melo Mota, s/n, Campus A.C. Simões, Maceió-AL, 57072-900, Brasil.

# MODELO de RESPOSTAS - QUÍMICA INORGÂNICA


#### OI 01.

Número quântico principal: fornece-nos a energia do elétron (orbital);

Número quântico secundário: fornece-nos a forma do orbital; Número quântico magnético: fornece-nos a orientação do orbital.

### OI 02.

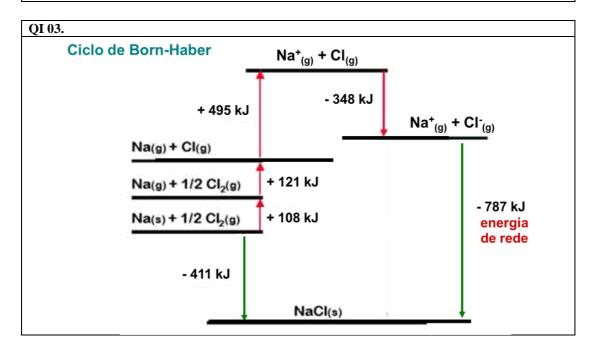
a) Total de elétrons de valência para a espécie  $H_2SO_3 = 26e$ . Expansão do octeto para o **S**. Hibridização =  $sp^3$ . Geometria da molécula = trigonal piramidal (derivada de uma tetraédrica).



**b**) Total de elétrons de valência para a espécie IF<sub>5</sub> = 42e. Expansão do octeto para o **I**. Hibridização = sp<sup>3</sup>d<sup>2</sup>. Geometria da molécula = piramidal de base quadrada (derivada de uma octraédrica).



**c**) Total de elétrons de valência para a espécie  $O_3 = 18e$ . Octeto para o **O**. Hibridização =  $sp^2$ . Geometria da molécula = angular (derivada de uma trigonal plana).




**d**) Total de elétrons de valência para a espécie ClO<sub>3</sub><sup>-</sup> = 26e. Expansão do octeto para o Cl. Hibridização = sp<sup>3</sup>. Geometria da molécula = trigonal piramidal (derivada de uma tetraédrica).

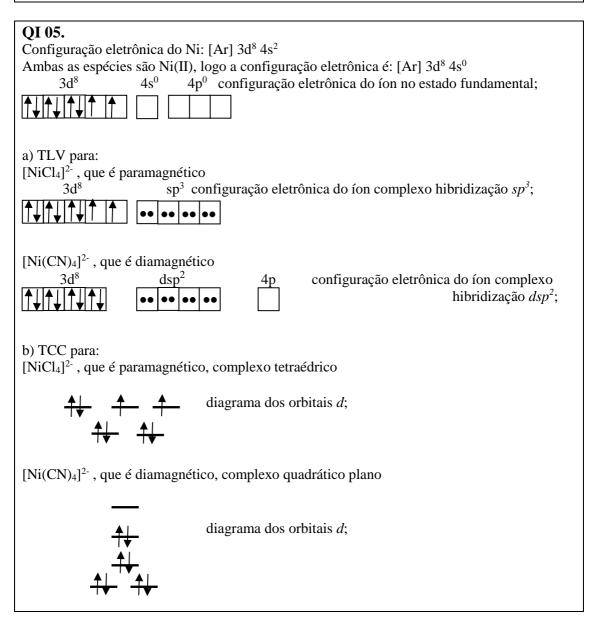


e) Total de elétrons de valência para a espécie  $PCl_6^- = 48e$ . Expansão do octeto para o **P**. Hibridização =  $sp^3d^2$ . Geometria do íon = octaédrica.








# Universidade Federal de Alagoas Programa de Pós-Graduação em Química e Biotecnologia



Av. Lourival de Melo Mota, s/n, Campus A.C. Simões, Maceió-AL, 57072-900, Brasil.

### QI 04.

A estrutura provável é [PtCl<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>]Cl<sub>2</sub>. Pois há a formação de 2 equivalentes de AgCl<sub>(s)</sub>, mostrando que somente dois equivalentes dos átomos de cloro estão na forma de cloretos e os demais na forma de ligantes cloro (*i.e.* ligados covalentemente ao átomo central) na estrutura do complexo. As moléculas de amônia devem estar coordenadas ao átomo central. A geometria do cátion complexo é octaédrica.

